QCD-NP-B Physics

Recent Results & Plans

Christos Leonidopoulos

DØ Collaboration Meeting

FNAL - October 10, 2003

QCD

Diffractive Z production

(a.k.a. Rapidity gaps)

LP03 selection cuts

LP03 selection cuts + rapidity gap requirement (gap definition not final)

Tamsin Edwards

Not shown outside D0 yet

dN/dt spectrum (elastic pp)

- First measurement performed in this *t* region!
- Using standalone FPD data
- All 18 FPD detectors fully commissioned by end of shutdown

Slope after fit & unsmearing:

$$b = -4.015 \pm 0.193 \,\text{GeV}^{-2}$$

Jorge Molina

Not shown outside D0 yet

DØ Collaboration Meeting – October 10, 2003

Jet cross-sections

D0 preliminary result for Moriond (p13.06 data; old JES corrections)

same data set; new JES corrections (post-Beaune calculations)

JES problem? (too high by $\sim 6-7\%$) QCD group working hard on JES studies

Not shown at summer conferences

Jet cross-sections (2)

(pre-Moriond data)/(post-Moriond data) ratio of p_T distributions (w/o JES corrections)

- Good compatibility between data sets
- *This is a JES effect* (for both sets), not a problem in post-Moriond data

 $A \sim 2\%$ error on JES gives a $\sim 20\%$ error on cross section

Raw p_T distributions

All corrections have been computed except unsmearing (JES issue has to be sorted out)

Jean-Laurent Agram Christophe Royon

Not shown at summer conferences

Raw dijet mass cross section

All corrections have been computed except unsmearing (JES issue has to be sorted out)

Studies on $\Delta \varphi$ between jets

- Good agreement between data & NLO QCD for medium $\Delta \phi$ values
- Disagreement at low Δφ values
 (i.e. high order effects)

Alexander Kupco

Not shown at summer conferences

New Phenomena

Large extra dimensions search: e^+e^- , $\gamma\gamma$

bayesian limit (MC ensemble)

likelihood limit (MC ensemble)

New limit on fundamental Planck scale (MP) : > 1.28 TeV (GRW convention)

Greg Landsberg

Large extra dimensions search: $\mu^+\mu^-$

Fundamental Planck scale: > 880 GeV at 95% C.L. (GRW convention)

Ryan Hooper, Greg Landsberg

1^{st} generation leptoquarks search: e^+e^-

Shaohua Fu, Vishnu Zutshi

1st generation leptoquarks search: e v

(LP03)

Alexis Cothenet Marie-Claude Cousinou Greg Landsberg

2nd generation leptoquarks search: μj μj

Charginos & neutralinos in trileptons

Ulla Blumenschein Volker Buescher

Search for RpV SUSY in trielectrons

(a.k.a λ_{121} coupling)

Anne-Marie Magnan Gerard Sajot

Search for GMSB SUSY: $\gamma\gamma$ w/ large \cancel{E}_T

Yuri Gershtein Stilianos Kesisoglou

Search for heavy resonances: $\mu^+\mu^-$

Ryan Hooper Greg Landsberg

Model independent search for NP: eμ

Daniel Whiteson

B Physics

"The Beauty is within"

B lifetimes (1)

Upsilon cross section

Dimuon invariant mass

Measurements in extended rapidity region!

Daniela Bauer Jundong Huang Andrzej Zieminski

Shown at QWG 03 workshop

B_S mixing reach: The Über Formula

Statistical significance:

of reconstructed events

Having a good understanding of all the above factors means that we are confident about the Δm_S reach of DØ

- High-profile analysis
- Many tasks, lots of people involved
- This is not a sprint, this is a marathon (run at sprint rates)!

B semileptonic mass peaks

D0 RunII Preliminary, Luminosity = 47 pb⁻¹

Current yield: ~ 560 events \times pb

Current yield: ~ 30 events \times pb

Guennadi Borissov

These plots: 7x statistics compared to LP03

B lifetimes (2)

D0 Runll Preliminary, Luminosity = 43 pb⁻¹ $(\tau^{+}-\tau^{0})/\tau^{+} = 0.087 \pm 0.019$ 0.5 $(B \rightarrow D^{0}\mu + X)$ $(B \rightarrow D^{*\pm}\mu + X)$ $0 \rightarrow D^{*\pm}\mu + X$ proper decay length (cm)

Guennadi Borissov Sergey Burdin Andrei Nomerotski

Not shown outside D0 yet

Brad Abbott, Tulika Bose, Vivek Jain Christos Leonidopoulos, Wendy Taylor

First B semileptonic lifetime measurement from TeVatron! (LP03)

B flavor tagging

$$D \to \ell^{-} X \qquad Q_{j} = \frac{\sum q_{i} \ \vec{p}_{i} \cdot \hat{a}}{\sum \vec{p}_{i} \cdot \hat{a}} \qquad \begin{array}{c} B^{**} \to B^{\pm} \ \pi^{\mp} \\ \text{or } \pi \text{ from fragmentation} \end{array}$$

Tagging method	Soft Muon	Jet Charge	Same Side	Total
Efficiency ε (%)	5.0 ± 0.7	46.7 ± 2.7	79.2 ± 2.1	
Dilution D (%)	57.0 ± 19.3	26.7 ± 6.8	26.4 ± 4.8	
Tagging power $\varepsilon \times D^2$ (%)	1.6 ± 1.1	3.3 ± 1.7	5.5 ± 2.0	in the works

(LP03)

(LP03)

Xiaojian Zhang

Christos Leonidopoulos

Efficiency
$$\varepsilon = \frac{N_{\text{correct}} + N_{\text{wrong}}}{N_{\text{correct}} + N_{\text{wrong}} + N_{\text{no tag}}}$$

Dilution
$$D = \frac{N_{\text{correct}} - N_{\text{wrong}}}{N_{\text{correct}} + N_{\text{wrong}}}$$

Relevant for significance of mixing measurement

Tagging power: $\varepsilon \times D^2$

This one just in!

B_S mixing reach: 500 pb⁻¹ projections

Single Muon Trigger:

$$B_S \to D_S^{\pm} \, \mu^{\mp} \nu \, X$$

Di-Muon Trigger:
$$B_S \to D_S^{\pm} \mu^{\mp} \nu X$$

(also single Muon Trigger and $B_S \to D_S^{\pm} e^{\mp} \nu X$)

$$B_S \to D_S^{\pm} e^{\mp} \nu X$$

Vivek Jain

Yield – 2K $\varepsilon D^2 = 0.5$, $\sigma_t \approx 150 \, fs$

Delta Ms (ps-1)

20

B physics triggers

- Low- p_T , inclusive single-muon trigger
 - Mainly used for $B_X \to D_X^{(*)} \mu \nu X$
 - Can also be used for $B_X \to D_X^{(*)} e \nu X$, $B_X \to D_X^{(*)\pm} \pi^{\mp}$ (just muons for tagging)
 - Majority of events in mass peaks
 made it off-line thanks to single muon triggers
 - Turned off at higher luminosities...
- <u>Dimuon triggers</u>
 - Contributes to $B_X \to D_X^{(*)} \mu \nu X$ (especially for high luminosities)
 - The "sine qua non" for all $J/\psi + X$ modes
- Working hard to improve our triggers
 - Focus on L3
 - Exploring the possibility of increasing DAQ bandwidth

Summary

• <u>QCD</u>:

- Goals for Moriond: preliminary measurements on dN/dt, diffractive W/Z studies and jet cross sections
- 3 publications by next summer

• New Phenomena:

- Update analyses by end of 03 with p14
- Publish in early 04 (leptoquarks?)

• B Physics:

- -B lifetime papers by end of year
- Aim for Δm_d mixing measurement, first Δm_s lower limit by end of 03 beginning of 04

